
Scheduling in Network Flow Shops 

Reza H. Ahmadi 

Revised September 1995 

Anderson Graduate School of Management at UCLA 
405 Hilgard Avenue 

Los Angeles, CA 90024- 148 1 
Email: rahmadi@agsm.ucla.edu 

ABSTRACT 

We consider the general problem of static scheduling of a set of jobs in a network flow 

shop. In network flow shops, the scheduler not only has to sequence and schedule but also must 

concurrently determine the process routing of the jobs through the shop. In this paper, we 

establish the computational complexity of this new class of scheduling problem and propose a 

general purpcxe heuristic procedure. The performance of the heuristic is analyzed when 

makespan, cycle time and average flow time are the desired objectives. 

Key Words: Scheduling, Routing, Network, Flow Shops, Heuristics, Error Bounds 

* This research has been supported by the UCLA Academic Senate Grant #95. 

Journal of Global Optimization 9: 293-320. 1996. 
0 1996 Kluwer Academic Publishers. Printed in the Netherlands. 

293 



294 

I. Introduction 

REZAH.AHMA!Jl 

The general network flow shop problem can be stated as follows. Given a directed acyclic 

graph G=(M, E), where M identifies the set ofprocessors (machines) and E denotes the set of links that 

connect the processors, the problem is to decide on process routing for the jobs and construct a 

schedule such that a desired regular performance measure is optimized There are n jobs available at 

time zero. Each job icN (i=l, . . . . n) would require pij unit of processing time on machine j=l, ., 

m=IMI, ifthe processing path (routing) designated for job i requires machine j. The processing paths to 

complete the job requirements are assumed to be simple paths. ,We assume the execution times are 

nonnegative integers. Then jobs may be processed in any order through the network on the machines, 

but no two of them may be executed at the same time on any machine. A job consists of a sequence of 

operations given by a path in the network G. All jobs are assumed to be processed without preemption 

A schematic representation of a network flow shop along with a sample processing path, indicated by 

double lines, is shown in Figure 1.1. 

Figure 1.1: Schematic Representation of a Network flow Shop 

Traditionally the scheduling literature has assumed a tixed process routing for the jobs. In 

other words the set of machines to be visited by each job is assumed to be known in advance and prior 

to the onset of operations, although the processing sequence of jobs could be similar (in case of flow 

shops), or dif&rent (job shops), or arbitrary (open shops). Recent growth in development and adoption 

of Flexible Manufacturing Systems (FMS’s) has introduced many challenging dimensions to the 

classical questions asked in the scheduling problems. An important feature of FMS’s is in their 

flexibility, not only in manufacturing different parts and products with diverse features, but also 

processing the jobs in d&rent processing sequences and at different workstations, This aspect of a 

job’s process flexibility, where choice of the job’s routing could a&ct the total processing time of the 

job, has not been addressed in the deterministic scheduling literature. 

The problem of sequencing and scheduling in a generuli:edJow shop has been the subject of 

considerable study by many researchers in recent years. Graves et al. [4] addressed the problem of 



SCHEDULING IN NETWORK FL.OW SHOPS 295 

scheduling a set of jobs in x-entrant flow shops, where a job may return one or more times to any 

processor for additional processing. Examples of such shops are found in flexible machining systems 

and integrated circuit fabrication processes. Wittrock [20] and Sriskandarajah and Sethi [ 161 looked at 

the problem of scheduling parts in flexible flow lines, where several identical machines process parts at 

each processing stage. Lawlex et. al [7], as well as many other researchers, have looked at the problem 

of scheduling jobs in shops with parallel machines. In these systems, the scheduler needs to decide on 

the allocation of the jobs to the machines, but each job requires only one operation. The network flow 

shop problem considered in this paper generalizes these instances of classical scheduling problems. 

The remainder of this paper is organized as follows. In Section 2 we propose a general purpose 

heuristic for the static network flow shop problem. Section 3 establishes the computational complexity 

of the network flow shop with the objective of minim&&g the makespan, and provides several tight 

worst case relative error bounds. In Section 4 we analyze the complexity and the worst case error 

bound of the proposed heuristic for minhiing the cycle time in a repetitive manufacturing 

environment. Section 5 concrzxrates on the analysis of the average flow time. In Section 6, we develop 

a polylogarithmic algorithm for the makespan problem. Section 7 reports the result of our 

computational experiments. In Section 8 we summarize our results and conclude the paper. 

2. Myopic Shortest Path Heuristic 

In this section we present a general heuristic, referred to as Myopic Shortest Path (MSP), to 

find the near optimal solution for the network flow shop problem under various objectives. Unlike the 

classical approaches in scheduling problems, we do not attempt to design a procedure suited solely for 

a given objective function; rather, we develop a heuristic procedure which is quite robust under various 

completion time based performance measures. 

The MSP heuristic consists of two parts. In the first part, the procedure detines the order for 

releasing jobs to the shop. In the second part, the procedure concurrently defines the routing and 

scheduling of the jobs while in the shop. The heuristic constructs a partial schedule, PS(GK)j on each 

machine j, at each iteration. PS(oK)j defines the schedule of job set K c N on machine j and (oK)j 

denotes the sequence and the set ofjobs that visit machine j. The heuristic may be stated as follows: 

Mvopic Shortest Path Procedure: 

Step 1. Compute the shortest processing route for each job i=l, .._, n, assuming complete machine 

availability. 



296 RFzAH.AHMALN 

Step 2. Reindex the jobs such that Cl’< Cz’< . ..I C,,‘, where G-denotes the length of the shortest 

processing path for job i. 

Step 3. Set K={ 1) for machines visited by job 1, for all other machines K={ 1zI}, define (oK)j and 

Ps(aK)j fOrj=l,...J3l, andSetk=2. 

Step 4. (i) Find the shortest route for job k given the partial schedule PS(Gx)j, j=l,Z, ___, m 

(ii) Set K=K+{k} for machines that are visited by job k. Update (oK)j and Ps(6K)j to 

incorporate the schedule of job k on each machine it will visit. 

(iii) Let CL denote the completion time of job k on the last machine on its route. 

Step 5. Set k=k+l and go to Step 4 if k I n, else stop. 

Step 4 of the procedure requires evaluation of the shortest path through a network given the 

partial schedule Ps(oK)j of jobs on machine j. The partial schedule defines the available and occupied 

time slots on each machine. To perform this step, the dynamic program for shortest path can simply be 

revised to find the earliest time that a job can be processed on machine j without interrupting the 

processing of the other jobs in the partial schedule. The MSP heuristic requires O(n3) steps of 

computation. 

3. The Makespan Problem 

In this section we establish the computational complexity of the network flow shop problem 

when the objective is to minimize the makespan. Moreover, we provide several worst case relative 

error bounds for the MSP heuristic under various network con&rations. 

Proposition 3.1: Minimizing makespan in the networkflow shop is unaty NP-hard 

Proof: We complete the proof by establishing the computational complexity of two basic network 

smxtures. The first one is the rooted tree and the second one is an ussembly tree. 

An Assembly Tree A Rooted Tree 

Case I: In this case we consider a rooted tree with m=3. We transform a general instance of the 3- 

Partition problem into an instance of the network flow shop problem. The 3-Partition problem is 



SCHEDULING IN NETWORK FLOW SHOPS 297 

defined as follows. A finite set A of 3n elements, a bound BEZ, and a “size” &EZ’ for each i=l, . . . . 

3n, such that B/4< ai <B/2 and J$,ai = nB. The instance of rooted tree flow shop is defined as: 

Pi1 = ai, pi2 =2nB+B, Pi3,2ai, for i = 1,...,3n. 

pi1 = BP pa = 2B, pi3=2nB fori=3n+1,...,4n-1. 

~4n.1 = J% ~4n,2 = B> P4n3 = 2nB. 

P4n+1.1 = Jk p4n+1,2 = O, P4o+lf = 0. 

P4n+2,1 - - 0, P4n+2,2 = O, P4n+2,3 = B. 

P4n+3,1 = O, P4n+3,2 = 2J% p4,,+sf = 0, and Y = B(2n.+ 1). 

There exists an schedule with makespan of B&+1) if and only if the set A can be partitioned into n 

disjoint sets Aj such that zaiaAj ai = B for each 15 j 5 n. Given Figure 3.1, if the 3-Partition has a 

solution then network flow shop has a makespan of B(2n+l). Note that the routing choices are easily 

M2 

Ml 

M3 
L 

4n+3 3n+l 3n+2 4n 

28 46 60 2nB 

Ai n+l 3n+2 n+3 n+l 

0 28 38 48 50 6B 2nB 

In+2 Ai 
0 38 50 B(2n+l) 

Figure 3.1 

defined, due to considerable processing tune differences. Conversely, if the makespan of any schedule 

is less than Y=B(2n+l), we claim that: (i) job 4n+3 is scheduled first on machine 2; (ii) job 4n+2 is 

scheduled first on machine 3; (iii) job 4n+l is scheduled last on machine 1; (iv) the schedule ofjobs on 

machine 1 should alternate between a subset of jobs i?om job 1 through 3n and a job from 3n+l 

through 4n, starting with jobs in the first class, similar to the schedule in Figure 3.1. 

If3-Partition does not exists, therefore there are at least two subsets of jobs 1 through 3n such 

bt Li EA, ai < B and Cai EAj ai > B. The schedule of these jobs would create idle time on machines 

1 or 3, resulting in a contradiction. We now turn to the proof of(i), (ii), (iii). and (iv). 

(i), [ii] If job 4n+3 (4n+2) is not scheduled tist. then idle time would be created on machine 2 (3). 

causing a contradiction. 



298 REZA H. AHMADI 

(iii) Similarly, ifjob 4n+l is not scheduled last on machine 1, idle time would be created on machine 2 

and3. 

(iv) Note that if a job from 3n+l to 4n is not scheduled in every 2B time interval on machine 1, there 

would be idle time on machine 2. Conversely, if subsets of jobs from set A are not scheduled in the 

same time interval, a delay is caused in machine 3, resulting in a contradiction. Furthermore, it is easy 

to see that the schedule on machine 1 should start with the subset ofjobs from set A. 

Case II: In this case we establish the computational complexity of an assembly tree with m=3. The 

proof is based on the following lemma, which generalizes a well-known property in the flow shop 

scheduling problem. 

Lemma 3.2: The problem of minimizing makespan in a rooted tree is equivalent to minimizing 

makespan in an assembly tree. 

Pro08 Given any rooted tree problem with m=3, a mirror image assembly tree can be constructed by 

changing the direction of flows in the graph. For every path in the rooted tree we have a corresponding 

path in the assembly tree. It is well known that minhbing the makespan in a flow shop is equivalent 

to minim%g the makeapau in its mirror image problem. Since this result holds for every path, 

therefore we conclude the lemma. 

From Case I and Lemma 3.2 it is evident that miniming makespan in an assembly tree is 

equivalent to mimmming makespan in a rooted tree. This completes the proof of the proposition. z 

The network flow shop problem remains NP-complete evedl when the processing times of jobs 

are proportionate. In an exact proportionate network flow shop, a constant of proportionality may be 

associated with each machine (Gw [ 121). If the first machine has a constant of proportionality equal to 

one, and the jtb machine has a constant of proportionality equal to oj, then a job of size p will have the 

processing tunes p, alp, . . . . %p on machine 1 through machine m. Consequently, the processing times 

of each job operation are proportionate. The following proposition establishes the complexity of the 

proportionate network flow shops, 

Proposition 3.3: Minimizing makespan in theproportionate networkflow shop is NP-hard 

Proof: We show the proof for the assembly tree case. The rooted tree case can be shown from 

Lemma 3.2. Partition can be reduced in polynomial time to an instance of a proportionate assembly 

tree flow shop. Partition may be described as follows. Given a linite set A of size n, with elements a; 

eZc for each i=l, . . . . n, is there a subset B c A such that z ai = C ai ? The instance of 
ai63 ai CA-B 

proportionate network flow shops is defined such that: pi1 = pi2 = ai, pis = ~= Ei for i = l,...,n. 



SCHEDULING IN NJilWORK FLOW SHOPS 299 

The elements have been reindexed such that E , 2 E t < . 5 B n Ei is a StiCitYldy Smah positive 

number and M is a very large number. Note that machine 3 is dominated, and if Partition has a 

solution then the proportionate network flow shop has makespan of smaller than or equal to 

Cai +2~, , (see Figure 3.2). Conversely if the makespan of any schedule is less than or equal to 
ai&3 

c ai f 2E,, thm de& p?dkIl should exist. 0 
ai& 

Figure 3.2 c ai +Ej+Ek 
aicE 

Next we address the computational complexity of minimizing makespan in a network flow shop 

with a no-wait restriction. 

Proposition 3.4: Minimizing makespan in the network f7ow shop with a no-wait restriction is 

unary NP-hard 

Proofi 3-Partition reduces to an instance of a no-wait rooted tree flow shop problem. We define ao 

instance of a no-wan rooted tree flow shop as follows: 

Pi1 = ai, Pi2 = O, Pi3 = O, fori=1,...,3n. 
Pi1 = B, pi* = 2B + 1, Pi3 = H, fori=3n+1,...,4n-1. 

PiI = O, piz = 2B + 1, Pi3 = O, i=4n. 

Pit = k Pi2 = H, pi3 =2B+l, fori=4n+1,...,5n-1. 

Pi1 = 4 Pi2 = H, ~is=B> i = 5n. 

Pi1 = B, Pi2 = O, Pi3 = O, i=5n+l. 
Pi1 = O, piz=o> pi3 =B+l, i=5n+2. AndY=n(2B+l). 

If3-Partition has a solution, then there exists a schedule with makespan of Y=n(2B+l). Figure 

3.3 shows the corresponding schedule. We note that the selection of route is easily idmtniable because 

of the significant processing time differences in the routes, since H is a very large number 



300 REzAH.AHMADI 

M2 

Ml 

M3 

4n 34l+1 
4fl-1 I 

2f3+1 48+2 

Aj 
3n+l A k 40-l 5n+l 

B B+l 48+2 5B+3 

5n+2 4n+1 4n+2 5-l 

B+l 3B+2 58+3 n(28+1) 

Figure 3.3 

Conversely, ifthere is a schedule with makespan of less than or equal to n(2B+l), we claim that 

(i) job 4n (5n+2) should be scheduled first on machine 2 (3); (ii) job 5n+l should be scheduled last on 

machine 1; (iii) the job’s schedule on machine 1 consists of cycles of a subset of jobs from 3-Partition 

elements, a job from 3n+l to 4n-1 and a job from 4n+l to 5n, similar to the schedule given in Figure 

3.3. It follows that if 3-Partition does not exist then the schedule on machine 1 would not be packed, 

and some idle time would be created, resulting in a contradiction. Now we consider the proof of(i), 

(ii), and (iii). 

(i) These jobs only require processing on machines 1 and 3, respectively. Delaying their processing 

will result in idle time on the corresponding machines, therefore causing a contradiction. 

(ii) Scheduling this job earlier would cause idle time on machines 1 and 3. 

(iii) It is easy to see that other forms of schedules on machine 1 would create unnecessary idle time on 

machine2or3. Li 

In real-life applications. it is often possible to control the processing time of jobs by managing 

the resources required to execute the tasks. However, shorter durations can only be achieved at some 

additional costs. ‘I% phenomenon is commonly recognized in the area of project scheduling, where 

the time-cost trade-offs are considered. This notion adds an additional dimension to the scheduling 

problem in which the processing times are also decision variables. The problem of minimizing 

makespan with controllable processing time in network flow shops can be stated as: 

2(x,%) = makespan + 2 Fcijxij 
i=l jd 

where x E X is the set of all feasible compressions , K a Fl is the set of all schedules on the machines , 
cij is the cost of compressing job i at machine j , and xij is the amount of compression. Compressed 
processing times are p ij (= pij - x,j. 

Proposition 3.5: Minimizing mokespan in the network flow shop with controllable processing 

time is NP-complete. 



SCHEDULING IN NETWORK FLOW SHOPS 301 

Proo) The network flow shop is a generalization of the two machine flow shop. Nowicki and 

Zdrazlka [lo] show that the decision form of the problem is NP-complete. The problem remains NP- 

complete, even when the processing times on the machines are fixed and all the processing cost tits 

are similar. 

Now, we focus our attention on analyzins the error bound of the MSP heuristic. In the 

following, we let ZMSP and Z’be the makespan obtained by the MSP heuristic and the optimal 

schedule, respectively. 

zMSP -z” 
Proposition 3.6: The relative error bound of the MSP hear& is 

Z” 
S m - 1. There 

are networkflow shops for which this is the bestpossible bound 

Prooj! lf all the processing times are equally divided among the m machines io the network flow shop, 

iCp 
we have Z* 1 i=l and ifjobs are processed one at a time in the shop, then we get ZMSP 5 2 Co; 

m i=l 

therefore: 
zMSP - z* &p-J&-& 

5 i=l I 

Z* 
=m-1. 

Recall that Cpis the shortest path through the network for job i, given that all the machines are free. 

We use the following example to show the tightness of the bound. In the example the number of 

machines is equal to the number ofjobs and the gmph is a directed linear graph. 

m=n,pti =lfor Ili<n-laudp~=aforlliInandlljln-landi#j. 

pin =i& for Ililn-landp, =I+ne. Therefore: 

Cp= l+(n-Z)E+~E for llil n-l and Cz = l+(Zn-1)~. Consequently tbe MSP heuristic orders 

the jobs as (1,2, ., n). However, the optimal order is the inverse of the order given by the heuristic 

and is (n, n-l, _, 1). Therefore, we have: 

CySP=i+(n+i-2)z for l<iln-1 and CySP=n+3(n-1)s. And 

n(n + 1) C*,=I+(n-l)~+n~andC;=l+(n-l)a+- E. Therefore: 
2 

zMSP -z* 
n(n + 1) n+3(n-l)E-l-(n-l)a--& 

2 
ZU 

= 
n(n + 1) 

and lim 
zMSP - z* 

=n-l=m-1. 0 
l+(n-I)&+------& E-+0 Z* 

2 



302 REZA H. AHMAJX 

Corollary 3.7: The relative error bound of the MSP heuristic for minimizing makespan with a no- 

wait restriction is 
ZMSP -z* 

Z’ 
I m - 1. This bound is obtainable. 

Pro03 The Myopic Shortest Path heuristic can be mod&d to obtain a solution under a no-wan 

restriction. Step 4 of the heuristic needs to be adjusted to incorporate tbis restriction. The proof is 

similar to the proof of Proposition 3.6. The example given in Proposition 3.6 and the schedules given iu 

Figure 3.4 establish that the bound is tight. 0 

I The Heudstic Schedule 

11 I- 

n 3 111 

4 11 

The Optimal Schedule 

Figure 3.4 

Next we look at special cases of the network flow shops, when the graph G is a @red 

network. Moreover, we assume that each layer (stage) 1 contains Kr identical machines and there are L 

layers. 

Proposition 3.8: The relative error bound of the MSP heuristic is 
zMSPvZ* L 

Z* 
5p+. 

I 

There exists a layered network for which this is the best bound 

Pro08 First we show that the MSP heuristic constructs a “busy” schedule for a layered network, then 

we establish the relative performance of the “busy” schedule. In the “busy” schedule, jobs are routed 

to the earliest available machine at each stage. Since the machines at each layer are identical, all the 

routes in the network are identical in their processing requirements. Consequently, Step 4 of the 

heuristic, which finds the shortest path given the machine availabilities, will route the jobs to the frrst 

available machine at each stage. Next, suppose all then jobs are completely processed on the I-th stage 

before their processing begins on the (l+l >th stage, for 15 1 CL- 1. Now let Ft denote the completion 

L 
time of the jobs at stage 1, if they were processed in isolation. We then have ZMSP s C Fj For each 

I=1 

stage 1, with Kt identical machines, t?om Graham [S], we get 6 5 (2 - L)Ei* for the bound on each 
Kl 



SCHEDULING IN NETWORK FLOW SHOPS 303 

stage of the parallel machines. Where jis the optimal processing for the jobs on stage 1, if they were 

done in isolation. It is easy to see that F,* I Z*for all 1 and consequently: 

zMSP - z* gfi -z* $(2-J-)2*-z* 
< l=l < 1=1 

z* - z’ - Z8 
=&2-1)-l. 

1=1 KI 

The following example shows that the bound is the beat possible for an instance of a network flow 

shop L=1,K1=K,pi=1fori=1,...,2K(K-1)andpi=2Kfori=2K(K-1)+1. The 

makcspau provided by the MSP heuristic is given by the schedule given in Figure 3.5. 

I 

I 
2(2K-1) 

2(K-1) 

1 

The Heuristic Schedule The OFlima Schedule 

Figure 3.5 

2K 

The corresponding optimal makespan is 2K and we have: 
pfsp - z* 

z* = 
WK-I)-‘= = 1-‘, ” 

2K K 

In the next proposition, we derive the relative error bound for the bottleneck nenvorkjo>v shop. 

In a bottleneck network flow shop, we are assuming that there exists at least one machine, on which 

every job has to be processed. Moreover, the total processing time of all the jobs at the bottleneck 

machine is larger than the total processing time ofjobs on rnry other machine. 

Proposition 3.9: The relative error bound of the MSP heuristic is 
zMSP_z’ 

Z’ 
<K-l, whereKis 

the number of machines on the path with the smallest number of machines. The bound is 

obtainable for bottleneck networkflow shop. 

Proo$ Let r be the index for tbe bottleneck machine. We have Z’ 1 Tpk Now suppose all the jobs 
i=l 

are routed through the path (L), the path with the minimum number of processors. Then: 

n n zMSP _ z* K;~ir-ipi, 
zMSP I: Cc:5 CpG I KEpti. Therefore: 5 i=l i=l 

Z’ 
=K-I. 

i=l jd. i=l 5Pi 
i=l 



304 P.EzA H. AnMADl 

We use the instance in Proposition 3.6 to show the tightness of the bound. Note in that example 

machine n is the bottleneck machine. 0 

Corollary 3.10: The relative error bound of the MSP heuristic for the proportionate network&w 

shop is 
zMSP - z* 

Z’ 
I K- 1, where K is the length of the path with minimum number of 

machines The bound is obtainable. 

Proofl Note that in the exactly proportionate network flow shop, there exists at least one simple path, 

which is the common shortest path for ah the jobs. The remainder of the proof follows Corn 

Proposition 3.9. 0 

Next, we provide a tight error bound when there are K classes of jobs. Within each class the 

jobs are assumed to be completely identical. 

Proposition 3.11: If the jobs belong to K distinct classes, the relative error bound of the MSP 

heuristic is 
zMSP - z’ 

Z* 
I K - 1 and there exists a network flow shop for which this I% a tight 

bound 

Proof The proof consists of two parts. In the first part we show the optimality of the MSP procedure 

when K=l. In the second part we establish the error bound for K>l. When K=l the release sequence 

does not influence the scheduling objective, however routing decision does impact the performance 

criteria The proof can be completed by performing an induction on the number of jobs being 

scheduled. It is easy to see that the tirst job is optimally scheduled. Now, we show that if jobs 1 

through k have been optimally scheduled, then the procedure optimally routes the (k+l)-tb job. Since 

the jobs have similar processing times on each machine, choices made in scheduling jobs 1 through k 

may not be reconsidered for scheduling of the (k+l >th job. Furthermore, Step 4 of the heuristic Emis 

the optimal tinishing time for job (ktl). Thus the procedure constructs an optimal schedule. For 

instances where K 2 2, we have Z’ 2 Z*(k). Where Z*(k)is the optimum solution for any given 

class of jobs. Now, if the classes of jobs are processed sequentially such that one class finishes 
K 

completely before the next one starts, we have: ZMSP I C Z*( k) I KZ’. 
k=l 

Therefore 
zMSP -z* 

Z’ 
5 K - 1. To show the tightness of the bound, set m=n=K in the example given 

in Proposition 3.6. 0 



SCHEDULING IN NElWORK FLOW SHOPS 305 

Next, we evaluate the performance of the MSP heuristic for the network flow shops with 

controllable processing times. To solve the problem, we propose the following two step procedure. The 

procedure is similar to Now&i and Smutnicki [ 111. 

Mvopic Shortest Path with Controllable Processing Times 

Step 1. Solve the network flow shop problem with the following processing times. 

pij e pij - Zc, where Zij = g(cij)uij, 0 < xij I uij and ~ij is the max imum compression amount 

g(y) = mm {tin{ 
l+u(m-1) y 

---,o),O), y~[O,l] and a=l- pm 
am a [P + &GT1* 

and p is the worst case ratio of the network flow shop 

Step 2. Given the schedule in Step 1, determine the optimal makespan among all compression vectors. 

Note that the optimAti on problem in Step 2 can be formulated as a standard linear program, 

which is solvable in polynomial time. In the next proposition, we provide the relative error bound for 

the above-mentioned heuristic, 

Proposition 3.12: The relative error bound of the MSP heuristic with controllable processing 

times 
ZMSPC _ z’ 

Ip+ p(m-p) 
Z* 2p+2Jpo-1 

- 1, where pe/O,mJ. The bound is tightfor p = m. 

Proof: The proof given by Nowicki and Smutnicki [l l] is derived for permutation schedules only. 

Now, suppose we restrict ourselves to the permutation schedules. With this focus, the relative error 

bound of the Myopic Shortest Path heuristic does not change. Tbe network flow shop, where the routes 

have been decided, is a regular flow shop problem with zero processing times allowed. The relative 

error bound obtained by the Myopic Shortest Path for this flow shop problem satisfies the requirement 

for p@O,m] and consequently the results follow. The example in Proposition 3.6 shows the tightness 

of the bound for p = m. L 

Section 4. The Cycle Time Problem 

The premise of just-in-time production systems has attracted considerable attention to the cyclic 

schedules, where the smallest set which satisfies the demand ratio of product mix is produced cyclically 

until the cumulative demand is produced. Although the cyclic schedules may not contain the optimal 

schedule, its repetitive nature simplifies the management of shop floor logistics and scheduling. 

Essentially, three classes of cyclic scheduling problems have been defined: i) The no-wait problem, 

which minimizes the cycle time subject to a no-wait constraint between machines; ii) The mininmtt- 

wait problem, which minimizes the average work-in-process inventory subject to the constraint that 



306 FZZA H. AHMADI 

jobs must be processed with maximum throughput or equivalently with minimum cycle time; iii) The 

finite-b&r problem, which minimizes cycle time subject to the constraint that jobs cannot leave for 

the next machine for processing if the downstream machine’s buffer is full. This problem is also 

known as the blocking problem. McCormick et al. [9] have shown that the &rite-buffer problem is a 

special case of the no-b&& problem, by considering each buffer as a machine with zero processing 

times. For further reading on cyclic scheduling the reader is referred to McCormick et al [9], Roundy 

[15] and Wittrock [20]. In the following, we investigate the complexity of the network flow shop cyclic 

scheduling problem. 

Proposition 4.1: The problem ofminimiz& cycle time for a cyclic network flow shop with a no- 

wait constraint is NP-hard in the strong sense. 

Proof: It is easy to see that the decision version of the problem is in NF’, since the solution can be 

guessed and checked by a nondeterministic algorithm in polynomial time. We transform Numerical 

Matching with Target Sums, which is known to be NP-complete in the strong sense (see Gamy and 

Johnson ), to an instance of a no-wait rooted tree flow shop problem. 

Numerical matching with target sums is defined as follows. Given disJoint sets X and Y, each 

containing n elements, sizes ai and bieZ+ for each element aieX and biaY and a target vector cieW 

with positive integer entries can XuY be partitioned into n disjoint subset A,, Ar. .._, A, each 

containing exactly one elements from each of X and Y, such that ai + b; = ci for i=l, . . n? Clearly a 

“yes” answer requires that ~(ai +bi ) = ECi We now define an instance of no-wait cyclic 
i=l i=l 

scheduling in a network flow shop with 3n jobs: 

Class I: pi1 = ai +H, Pi2 = 2K pi; = nH fori = l,...,n. 
Class II: pi1 = bi +2H, Pi2 = 4H, pij = nH fori=n+1,...,2n. 
Class III Pil = 3H, Pi2 = nH, pi; =6H+C- I fori=2n+l,...,3n 

where H=2~Ci. 
i=l 

If Numerical Matching with Target Sums has a solution, then the cyclic schedule of jobs given 

byFigure4.1resultsinacycletimeequalto(12n+1)~~. 
i=l 



SCHEDULING IN NETWORK FLOW SHOPS 307 

M2 a, 1 b, n+l n 1 2n 

Ml 2n+l 1 n+l 1 2n+2 1 . n 1 2n I2n+l 
H+a , 

M3 .‘. 2n+l I . . . 3n . . 
6H+c i 

Figure 4.1 

Although there are two routes for processing each job, the choice of the routing is quite clear, Also 

note that the cyclic schedule in Figure 4.1 there are no idle time on machines one and three. 

Conversely if there is a cyclic schedule x with a cycle time less than or equal to (12n+ 1) 2 Ci , 
i=l 

we show that it should be of the form given in Figure 4.1 and we make the following claims: 

i) The schedule on machines one and three have no idle time, 

ii) In the schedule x, job 2n+l is immediately followed by job 1 and job n+l, 

iii) In the schedule x, a job from class LII should immediately follow the partial sequence of jobs (2n+l, 

1, n+l). 

Using claims ii and iii and an induction argument, it can be shown that the cyclic schedule x 

has the same form as the schedule given in Figure 4.1. If numerical matching with target sum does not 

exist, and ai + bi < Ci, idle time would be created on machine 1, resulting in a contradiction. Therefore 

ai + bi t ci, and since in order to have a “yea” answer to the numerical matching with target sum 

problem we should have F( ai +bi) = tci, we conclude that ai + bi = Ci rtrrd therefore disjoint 
id i=l 

subsets should exist. Now we consider the proof of claims I, n, m, and iv. 

i) The total processing time on machine one and machine three in a cycle for schedule x is equal to the 

cycle time given in Figure 4.1. Any idle time on these machine would result in a contradiction. 

ii) There are eight other combination of jobs that could follow job 2n+l. It can be easily shown that all 

these combinations would create an idle time on either machine one or machine three, resulting in a 

contradiction. 

iii) If a job from class I or II is scheduled after the partial schedule. then an idle time would be created 

on machine one, resulting in a contradiction. 

From Lemma 3.2, we conclude that cyclic scheduling with no-wait restriction in an assembly 

tree is NF’-hard in the strong sense. This completes the proof. 0 



308 REZAH.AHMADl 

Corollary 4.2: The problem of minimizing cycle time with no-buffer andjinite-buffer restriction 

in a cyclic networkflow shop are NP-hard in the strong sense. 

Proof: The proof of Proposition 3.4 could be used to show the first part of the corollary. Also, as 

discussed earlier the no-buffer problem can be reduced to a finite-but&r problem. C 

Proposition 4.3: The minimum-wait cyclic network flow shop problem is NP-hard in the strong 

sense. 

Pro08 The problem of minimum-wait in a two-machine flow shop has been shown to be NP-hard in 

the strong sense, (see Matsuo [S]). By restricting a network flow shop we conclude the proposition. 12 

Next we establish the relative error bound of the MSP heuristic for minimizing cycle time with 

no-buffer and tinite buffer. 

Proposition 4.4: The relative error bound of the MSP heuristic for minimizing cycle time subject 

to no-wait is 
zMSP - z* 

Z” 
I m - 1. There is a cyclic network frow shop for which this is the best 

possible bound. 

Proofi The proof is similar to the proof of Proposition 3.6. The following instance shows that the 

bound is tight for an m machine flow shop. 

n=m~l,p~~=1forl~i~m-landp~=~for1~iIm~d1~j~m-l~di~j. 

pim =iafor lliln-l,p,, =l+m&,p,+r,j=aforj=l,..., m 

The heuristic generates the sequence (m+l,1,2,...,m), whereas the optimum sequence is (m+l.m,m- 

l,...,l). The heuristic cycle time (CTMSP) and optimum cycle time (CT*) are: 

m(m-t-1) CTMSP=m+2(m-1)s andCT*=l+a+p Therefore lim 
ZMSP - z’ 

a. =m-1. z 
2 E-+0 Z* 

Corollary X5: The relative error bound of the MSP heuristic for no-wait proportionate and 

bottleneck cyclic networkflow shops are 
zMSP - z’ 

Z’ 
< K - 1. This bound is tight. 

ProoJ The proof is similar to the proof of Proposition 3.9. The same set of inequalities can be written 

for the cycle time. The example given in Proposition 4.4 can be used to show the tightness of the 

bound. 0 

Corollary 4.6: Zf the jobs belong to X distinct &asses, the relative error bound of the MSP heuristic 

zM= - z* 

Z* 
I K - 1 and there exists a no-wait cyclic network frow shop for which this is a tight 

bound. 



SCHEDULING IN NEIWORK FLOW SHOPS 309 

ProoJ The proof is similar to the proof of Proposition 3.11. The example given in Proposition 4.4 

establishes the tightness of the bound. 0 

The MSP heuristic results in an arbitrarily bad relative error bound for the minimum-wait 

cyclic network problem. To show the bound we use the following example. 

m=2,n=3,pll= 4, PIZ = 2, P21 = 6, p22 = 3, P;l = 3, p32 = 6 

The MSP heuristic and the optimum schedules are shown in Figure 4.2. 

~~ 
Figue 4.2 

The cycle time is 13. The optimum schedule results in no waiting time, but the MSP heuristic has a 

total waiting time of 2. And tb.e worst case relative error bound is arbitrarily bad. The same result 

could be obtained for the special cases of cyclic network flow shops, such as bottleneck and 

proportionate network flow shops 

Section 5. Average Flow Time Problem 

In this section, we concentrate on the analysis of the MSP heuristic for the average and 

weighted average flow time problem. 

Proposition 5. I: Minimizing meanjlow time in a networkjlow shop is unary NP-hard. 

Proofi The network flow shop subsumes a general instance of a simple flow shop problem. It is 

sticient to note that minimidng mean flow time in two machine flow shops is unary NP-hard, (see 

Gonzalez and Sahni [3]). 5 

The next proposition provides a job dependent bound for the MSP heuristic. 

Proposition 5.2: The relative error bound of the MSP heuristic is 
zMSP - z’ n-l 

Z’ 
I - and there are 

2 

networkflow shops for which this is the best bound 

Pro08 We have Z* 2 ?Cp. From the heuristic we know: Cy $ Ci <...5 Cg. Consider the job 
i=l 

order (1.2, ._.. n). Let Cpsp be the completion time ofjob k in the MSP heuristic. We have: 



310 REZA H. AHh4ADI 

R= 
pf= - z* I (n-1)CP+(n-2)C02+“‘+C~-, Ris ma.&,,jz~ whm : 

Z’ ;Cp 
i=l 

0 - 1) CO 
pf--z* ~ n 

c;)=c;=...=c,o* 5 I2 
n-l 

Z* llc; 
=-. 

2 

To show the @mess of the bound we use the example in Proposition 3.6. We have: 

ZMSP n(n + 1) =-+E~(E); wheref(&)isapolynomial tictionin~. And Z*=n+&g(~). 
2 

lim 
zM=’ - z’ n-l r 

E--f0 z* =-T i 

The next proposition provides a machiue dependent bound for the MSP heuristic. 

Proposition 5.3: The relative error bound of the MSP heuristic is 
zMSP -z* 

Z* 
I m- 1 and there 

are networkflow shops for which this is the best bound 

Proof: For each job k we have Cpsp 5 Cp+...+Ci if the shortest path for each job is used 

consecutively. Therefore ZMSP < nCp+(n-l)Cz+...+Ci and Z* >“Cp+“-‘Cz+...+lCz. 
m m m 

Therefore: 
zMSP - z* C~(o-$)+C~(n--l-G)+,..+Cz(l-l) 

Z* 
I 

t(nCp+(n-l)C;+...+Ct) 
m <(m-l) 

to show tightness of the bound set n=2m-1 in the example used in Proposition 5.2. C 

zMSP -z* 
Proposition 5.4: The MSP heuristic has a relative error bound of 

Zf 
<n-l, when 

applied to the weightedf7ow time problem. 

Proofi Note that the order of the jobs is given as Cy 5 Cz 1...1 Ci, Therefore Z* 1~ WiCp, and 
i=l 

ZMSP Iw,C~+wz(C~+cp)+...+wn(~C~) 
i=l 

zMSP - z* 
~Wj~ICp-~WiCp 

= i=I i=l 
cp;wi+...+c;w, 

R= = i=2 

Z’ ~WiCp w,cy+...+w,c; 

i=l 



SCHEDULING IN NETWORK FLOW SHOPS 311 

noteif a>_clz * a>_ a+c+x 
Ci iVVi 

i=k+l 

b d Y 
-----.Nowlet-=mm------- 

b b+d+y wkc: 
9 

I=1 WFP 
by subtitutingevery termwith thelargest termwe get: 

(n-l)C~ ~Wi 
RI i=k+l 

wkci 

= (n-l). 

To establish the tightness of the bound we modify the example used in Proposition 3.6, with the 

following weights. Wi = 0 for i = l,..., n - 1 and w, = 1. Therefore: 

ZMsp =twiC”’ =w,Cpp=n+3(n-l)E And 
i=l 

Z* = ~WiCr =wnCE = 1+(2n-l)&, 
i=l 

zMSP - z’ = n+3(n-l)E-1-(2n-1)a andlim Z”“-Z* 
Z” 

=n-1. 
Z* 1+(2n-l)E a-10 

Proposition 5.5: The Weighted Myopic Shortest Path heurtitic has a relative error bound of 

ZMSP -z’ 

Z’ 
5 m - 1 , when applied to the weightedjlow time problem There erists an instance of 

a networkjlow shop for which this is the best bound 

Proof: We have Z* 1-!- ~wi iCp, assuming that the jobs are processed based on the Weighted 
m i=t j=l 

Myopic Shortest Path (WMSP) but are equally divided among all the machines. Also: 

i 
ZwMsp 5 5 Wi C Cp therefore 

f+fsp - z* 
=m-1 

i=l j=l Z’ 

We add the following weights to the example given in Proposition 3.6 to show the tighmess of 

the bound. For wi = 1 +is, for i = 1,. __ ,n. The heuristics generates the sequence (1.2 ,__. ,n), but the 

optimal solution is given by (np-l,...,l). The bound can be similarly established. C 

Section 6. A Polylogarithmic Approximation Algorithm for the Makespan Problem 

In this section we concentrate on developing a deterministic algorithm that generates a 

polylogarithmic approximation to the network flow shop problem when the objective is to minimize 

makespan. The algorithm may be called a S-approximation. If’ a polynomially tune bounded algorithm 



312 RFZA H. AHiWADl 

always provides a makespan of at most 6Z*, then it is called a &approximation algorithm The 

algorithm is shown to find a schedule with makespan 0( log ’ (m)C* ) in polynomial time. 

Some of the most promising approximation algorithms for the general job shop scheduling 

problem of eg makespan are by: Sevastyanov [17], [18], Barany [l], and Fiala[Z]. This stream 

of work may be classified as geometric approach to scheduling. Another line of research on the 

approximation algorithm, by Raghavan [ 131, Raghavan and Thompson [14], may be referred to as 

randomtied upproach. The work of Shmoys, Stein, and Wein [ 191 integrates the two approaches and 

provides the first polylogarithmic performance guarantee for. a randomized and deterministic 

polynomial-time approximation algorithm for a job shop scheduling problem. In this section we extend 

this work to the network flow shop scheduling problem. 

The idea behind the algorithm is as follows. We first relax the machine capacity constraint, in 

which each machine processes at most one job at any given time. Next, the jobs are scheduled through 

the network along their shortest paths. At tbis time more than one job may be assigned to any machine 

at any time. We show that we can delay the starting time of each job such that no more than a 

prespecified number of jobs are scheduled on any machine during any time unit. Next, a feasible 

schedule, which is at most within a constant from the optimal schedule, is constructed. The algorithm 

may be formally stated as: 

The &aoproximation Algorithm: 

Step 1. Define a conflict schedule, by performing each job starting at time zero and running 

continuously in the network, on the job’s shortest path. 

Step 2. Modify the conflict schedule by delaying the start time of the f&t operation of each job by a 
n 

rando??z amount from a discrete dorm distribution in the range [0, 

no more than O(log(m)) jobs are scheduled on any machine at any given time. 

Step 3. Expand this schedule such that at any given point in time all jobs being processed have the 

same size. Flatten this schedule to obtain a feasible schedule. 

Note that the makespan of the confrict schedule is <; Ci Step 2 of the algorithm requires 

delaying the start time of the jobs in the conflici schedule such that no more than a given number of 

jobs are concurrently processed on any machine at any point in time. We first show that with high 

probability no machine is assigned too many jobs at any time. Then, we show how to deterministically 



SCHELMJLING IN NElWORK FLOW SHOPS 313 

allocate delays to each job to generate a schedule in which the machines have O(log(m)) jobs running 

concurrently at any one point. This step, which is referred to derundomi:ution, requires approximately 

solving an NP-complete integer programmin g problem Our procedure differs corn [ 191 in step 2. 

Recall that unlike job shops, in network flow shops the total workload of each machine and length of 

the jobs are functions of the process routing and is not tixed apriori. Therefore, we base the construct 

of the conflict schedule on the shortest path for the jobs, which is a lower bound to the optimal 

schedule. 

Proposition 6. I: Given a network flow shop problem, the strategy of delaying each job with an 

n 
max Cp 

initial integral amount selected randomly from a discrete uniform distribution from [0, &A--- 
log(m)]’ 

and then processing its operations in sequence, willproduce an invalid schedule with makespan of 

and that with high probability has no more than O(log(m)) jobs 

scheduled on any machine within any unit time intervaL 

Proofi The proof is shown for the case that maximum processing time (pmaX) is bounded by a 

polynomial in m. In [19] it is proved that any instance of the job shop scheduling problem can be 

transformed into one with pm&*. = O(m) with the property that a schedule of the modified instance with 

makespan of kZ*can be converted in polynomial time to a schedule for the or&&l instance of 

makespan (k+l) Z”. 

Now, we concentrate on a machine j and time t. Let p = probability[at least r units of 
n 

processing are allocated on machine j at time t] and 0 = maxCo. It is clear that there are at most 
i=l 

i-2 

0 
combinations for selecting r units of processing time from all those jobs whose shortest path goes 

r 

through machine j. The probability that any particular T is scheduled at time t is A. If all the T units 

are from different jobs, then with a probability of at most 1 r 0 - 
R 

the different jobs are scheduled at time 

t. Otherwise, the probability that all r are scheduled at that time is 0, since that is impossible. We 

therefore have: 



314 RJZZA H. AHMAJJI 

Ifr = k(log(m)) then p would be sticiently very small. To bound the probability that any machine at 
II 

maxcp 
any time has more than k(log(m)) jobs using it, we multiply p by Lx Ci + Al--- for the number of 

i=l log(m) 

time tmits in the schedule, and by m for the number of machines. The quantity $; Ci is bounded by 

a polynomial in m, since we have assumed that p ,,,= is similarly bounded. Therefore choosing a large 

enough k yields that, with high probability, no more than k(log(m)) jobs are scheduled for any machine 

during any unit of time. 

The Derandomization Procedure: 

In this part, we develop an integer program to derandomize Step 2 of the S-approximation 

algorithm. To achieve this, we formalize the problem as a vector selection problem and formulate it as 

a pure integer program, which is solved approximately. 

mixcp 
Since we have assigned delays in the range [0, - Ids], the resulting schedule has length 

D 
max cp 

L<mixCi +i=l 
logs 

Consequently, the processing of a job i with initial delay T can be represented 
i=l 

by an (mL>lengtb { 0,l }-vector where each position corresponds to a machine j and a given time t. It 

takes a value of 1 if machine j processes job i at time t, and 0 otherwise. Corresponding to each job i 

and each possible delay I-, we have a vector Vir which indicates the assignment of delay r to job i. 
n 

max cp 
i=l 

NOW, let hi be the set of vectors {Vi,, . . , VT-~ ) , where T,,, = - 
log(m) ’ 

and let Vir(k) be the k-tb 

element of the Vir. Let A = { 1,). . , h, ) be the set of vectors and Xir be the 0- 1 variable if Vir is 

selected from Ai The problem can be stated as follows: 



SCHEDULING IN NETWORK FLOW SHOPS 315 

Min W 

st. yx, =l i=l n ,..., 3 
l-=1 

2 ryv&k)X, I w 
i=l r=l 

k = l,...mL 

where W is the maximum number of jobs that use a machine at any given time. The integer 

programming problem is shown to be NP-complete [13]. Therefore, we solve it by first solving its 

linear programmin g relaxation and then use the randomized rounding procedure given in [ 131 to obtain 

a solution which is within a constant of the optimum solution. From Proposition 6.1, we know that 

optimum value of W, =O(log(m)). The next proposition bounds the value of the heuristic solution. 

Proposition 6.2: The randomized algorithm results in a solution which is OYW,, + log(m)) in 

polynomial time. 

Proof: The result follows directly from tb.e results in [ 131. 

Step 3 of the approximate algorithm expands the schedule obtained in Step 2 such that at any 

given point in time all jobs being processed have the same size, and thenflattens the schedule to get a 

feasible solution. The next proposition is due to [ 191. 

Proposition 6.3: Given a schedule S* of length L that has at most c jobs scheduled on one 

machine during any unit of time, there tx&s a polynomial-time algorithm that produces a valid 

schedule of /ength O(cLlog(m;~,pij)). 

By applying the Proposition 6.3 we get the desired feasible schedule. The schedule can be 

shown to be of the length O(log’(m)C*), which has a polylogaritbmic performance guarantee for 

network flow shop. Note that for the bottleneck and proportionate network flow shops, the bound is 

O(log’(K)C*), since we can construct the schedule based on a sample with K machines 

Section 7. Computational Experience 

In this section, we report the result of our computational experiments that compare the two 

heuristics developed in the earlier sections. We test our proposed heuristics on a collection of random 

problems where the objective firnction is makespan, sum of completion time and cycle time. The 

problems tested have the following characteristics The number ofjobs in the experiments are set to be 

20,30,40, and 50. The network cotigurations tested are: assembly tree (AT), rooted tree (RT), with 



316 REZA H. AHMADI 

three machines, layered network (LN) with three machines at each layer and with three layers, and the 

random network (RN) represented in Figure 1.1. The processing times of jobs for each machine was 

generated randomly from a discrete hform distribution ranging from 10 to 50. Table 7.1 summarizes 

our computational results. 

Table 7.1 
Result of Computational Comparisons 



SCHEDULING IN NETWORK FL.OW SHOPS 317 

Each entry in Table 7.1 reports the average ratio of solutions from using the MSP to tbe 

polylogarithmic heuristic. The results are obtained from solving 20 problems in each instance. Notice 

that on the average the Myopic Shortest Path heuristic performs much better than the Polylogaritic 

heuristic, when the objective function is makespan or cycle time. For the network flow shop problems 

with sum of completion tune as the objective function the two procedure perform quite similarly. 

Section 8. Final Remarks 

In this paper we have primarily concentrated on analysis of the makespan, cycle time, and flow 

time. The following example indicates that the MSP heuristic performs arbitrarily bad, whm the 

objective function is to minimize total tardiness or the weighted number of tardy jobs. 

m=n=3. pr1=M,pr2=1,pr3=1. p2,=I+a,pZZ=M,p2s=1. ps,=1,ps2=1,ps3=M+2a 
withtheduedatesdl=M+4+2a,d2=M+3+2a,ds=M+2+2a. The optimum sequence is 

(3,2,1) with ~~ = 0, whereas the MSP heuristic generates the sequence(l,2,3) with 2J = 3M +3. 
i=l i=l 

Similarly, the same instance results in an arbitrarily bad error bound, for weighted number of tardy 

jobs. These observations indicate the need for more sophisticated versions of the MSP heuristic for due 

date related performance measures. The results presented in this paper is categorized in Table 8.1. 

The network flow shop problem is a generalization of the classical scheduling problem 

considered in the literature. Commonly, the following categories have been used to classify the 

scheduling problems; single machine, single stage, flow shop, job shop, open shop and finally dag shop. 

(In a dag shop, only a partial order for visiting the processors is given, however the jobs complete their 

processing when a complete order to visit all the machines is defined.) The two constructs of the 

network flow shop, the graph G and the type of sample path, can be used to form an instance of any 

scheduling problem For example, if G is a directed linear graph, the network flow shop reduces to a 

simple flow shop problem. When the graph G is a complete graph and any node is a potential source 

and terminal node in the graph, and the paths required for processing the parts are Hamiltonian paths 

rather than simple paths, then the problem is similar to au open shop problem which every path is a 

viable order for completing the jobs. Similarly, the network flow shop equivalent to a dag shop is a 

clique but with partial order defined for processing the parts in the graph. 

In the scheduling problem addressed in this paper, we have ignored the time required to move 

the jobs tbrougb the system. However, in many FMS’s the time to transport a part from one machine 



318 REZAH.AHMADl 

Table 8.1 

Summary Results 

Performance 
Makespan 
Makespan 
Makespall 

Restriction 

no-wait 

condition Complexity Error Bound 
Unary NP-hard m-l 
Unary NJ’-hard m-l 

Layered Network Unaty NP-hard 

Makespall Bottleneck Graph Unary NP-hard K-l 
Makespall Proportionate NP-hard K-l 

I Make.SprEl 1 K Job-Classe s Unary NP-hard K-l 
I 

I 
Cycle Time no-wait Unary NP-hard m-l 

I Cycle Time no-wan ) Proportionate 1 NP-hard 1 K-l 
Cycle Time no-wait 1 K Job-Classes ) Unary NP-hard K-l 
Mill-wait 1 Max throughput 1 Unary NP-hard Arbitrarily bad 

Flow Time 1 Unary NP-har d (xl- 1 )I2 
Flow Time 1 Unary NP-hard m-l 

Weighted Flow Time 1 1 Unaty NP-hard n-l 
Weight Flow Time 

Weighted Number of 
Tardy Jobs 

Total Tardiness 

WMSP Unary NP-hard m-l 
Unary NP-hard Arbitrarily Bad 

Unary NP-hard Arbitrarily Bad 

to another might be significant compared to the processing time of the jobs, and therefore should be 

considered explicitly in the scheduling decision making. Many of the results presented in this paper 

would hold for network flow shops when the graph is both edge and node weighted, where the weights 

on the arcs are the transport time. 

Acknowledgment: The author would like to thank professor Marc Posner and the anonymous referee 

for their valuable suggestions. 



SCHEDULING IN NETWORK FLOW SHOPS 

References 

319 

PI 

PI 

[31 

141 

PI 

Fl 

171 

PI 

PI 

[lOI 

1111 

WI 

iI31 

1141 

P51 

I. Barany, “A vector-sum theorem and its applications to improving flow shop guarantees”, 

Math. of Opns. Res., Vol. 6, No.3, 1981. 

T. Fiala, “An algorithm for the open-shop problem”, Math. of Opns. Res., Vol. 8, No. 1, 1983. 

T. Gonzalez and S. Sahni, “FIowshop and jobshop schedules: Complexity and approximation”, 

Opns. Rea. 26(1 I), 36-52 (1978). 

SC. Graves, H.C. Meal, D, Stefek, and A.H. Zeghmi, “Scheduling of reentrant flow shops”, 

J. of Opns. Management, 3(4), (1983). 

R.L. Graham, “Bounds for certain multiprocessing anomalies”, Bell System Tech. J. 45, 1563- 

1581, (1966). 

H. Kamoun and C. Sriskandarajah, “ The complexity ofjobs in repetitive manufacturing sys- 

tems”, Eur. J. of Opns. Res., 70,350-364( 1993). 

E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, “Recent developments in deterministic 

sequencing and scheduling: A survey”, in: M.A.H. Dempster et al. (eds.), Deterministic and 

Stochastic scheduling, D. Reidel Publishing Co. Boston, MA, 35-73, (1982). 

H. Matsuo, “Cyclic sequencing problems in the two-machine permutation flowshop: Com- 

plexity, worst-case and average-case analysis”, Naval Res. Log. 37,679-694( 1990). 

S.T. McCormick, M.L. Pinedo, S. Shenker, and B. Wolf, “Sequencing in an assembly line with 

blocking to minimize cycle time”, Opns. Rex 37(6), 925-935(1989). 

Now&i, E., and Zdrzalka, S., “ A survey of results for sequencing problems with controlabie 

processing times”, Disc. Applied Math, 26,27 l-287, 1990. 

Nowicki, E., and Smutnicki, C., “ Worst-case analysis of an approximation algorithm for flow- 

shop sequencingproblem”, Opns. Res., 8. 171-177, 1989. 

P.S. Ow, “Focused scheduling in proportionate flowshops’, Management Sci. 3 l(7), 852-869, 

(1985). 

P. Raghvan, “ Probabilistic construction of deterministic algorithms: approximating packing 

integerprograms”, J. of Comp. and Sys. Sci., 37, 130-143, 1988. 

P. Raghvan and Thompson, CD., “Provably good routing in graphs: regular arrays”, Proc. of 

17th Annual ACM Symp. on Theory of Computing, 79-87, 1985. 

R. Roundy, “Cyclic schedules for job shops with identical jobs”, Math. of Opns. Res. 17(4), 

842-865( 1992). 



320 R!ZAH.AHMADI 

[161 C. Sriskandarajah and S.P. Sethi, “Scheduling algorithms for flexible flowshops: worst case 

and average case performance”, Eur. J. of Opns. Res. 43,143-160 (1989). 

[17] Sevastyanov, S.V., “ Bounding algorithm for the routing problems with arbitrary paths and 

alternative servers”, Kibemetika, 22 (6), 74-79, 1986. 

[ 181 Sevastyanove, S.V., “ Efficient construction of schedules close to optimal for the cases of 

arbitrary and alternative routes of parts”, Soviet Math. Kokl., 29(3), 447-450, 1984. 

[I93 D. B. Shmoys, C. Stein, and I. Wein, “Improved approximation algorithm for shop scheduling 

problems”, SIAM Jour. on Camp., Vol. 23, pp 617-632, 1994. 

[20] R.J. Wittrock, “Scheduling algorithms for flexible flow line”, BM J. Res. Develop. Vol. 29, 

No. 401-412, July (1985). 


